Logo des Repositoriums
 

Lifting in Support of Privacy-Preserving Probabilistic Inference

dc.contributor.authorGehrke, Marcel
dc.contributor.authorLiebenow, Johannes
dc.contributor.authorMohammadi, Esfandiar
dc.contributor.authorBraun, Tanya
dc.date2024-11-01
dc.date.accessioned2025-01-13T11:15:16Z
dc.date.available2025-01-13T11:15:16Z
dc.date.issued2024
dc.description.abstractPrivacy-preserving inference aims to avoid revealing identifying information about individuals during inference. Lifted probabilistic inference works with groups of indistinguishable individuals, which has the potential to prevent tracing back a query result to a particular individual in a group. Therefore, we investigate how lifting, by providing anonymity, can help preserve privacy in probabilistic inference. Specifically, we show correspondences between k -anonymity and lifting and present s-symmetry as an analogue as well as PAULI, a privacy-preserving inference algorithm that ensures s-symmetry during query answering.de
dc.identifier.doi10.1007/s13218-024-00851-y
dc.identifier.issn1610-1987
dc.identifier.urihttp://dx.doi.org/10.1007/s13218-024-00851-y
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45574
dc.publisherSpringer
dc.relation.ispartofKI - Künstliche Intelligenz: Vol. 38, No. 3
dc.relation.ispartofseriesKI - Künstliche Intelligenz
dc.titleLifting in Support of Privacy-Preserving Probabilistic Inferencede
dc.typeText/Journal Article
mci.reference.pages225-241

Dateien