Logo des Repositoriums
 
Zeitschriftenartikel

Lifting in Support of Privacy-Preserving Probabilistic Inference

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Journal Article

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Springer

Zusammenfassung

Privacy-preserving inference aims to avoid revealing identifying information about individuals during inference. Lifted probabilistic inference works with groups of indistinguishable individuals, which has the potential to prevent tracing back a query result to a particular individual in a group. Therefore, we investigate how lifting, by providing anonymity, can help preserve privacy in probabilistic inference. Specifically, we show correspondences between k -anonymity and lifting and present s-symmetry as an analogue as well as PAULI, a privacy-preserving inference algorithm that ensures s-symmetry during query answering.

Beschreibung

Gehrke, Marcel; Liebenow, Johannes; Mohammadi, Esfandiar; Braun, Tanya (2024): Lifting in Support of Privacy-Preserving Probabilistic Inference. KI - Künstliche Intelligenz: Vol. 38, No. 3. DOI: 10.1007/s13218-024-00851-y. Springer. ISSN: 1610-1987

Schlagwörter

Zitierform

Tags