Addressing Privacy in Passive Data Collection for Nursing Documentation
dc.contributor.author | Bahrololloomi, Farnod | |
dc.contributor.author | Luderschmidt, Johannes | |
dc.contributor.author | Staab, Sergio | |
dc.contributor.editor | Klein, Maike | |
dc.contributor.editor | Krupka, Daniel | |
dc.contributor.editor | Winter, Cornelia | |
dc.contributor.editor | Gergeleit, Martin | |
dc.contributor.editor | Martin, Ludger | |
dc.date.accessioned | 2024-10-21T18:24:25Z | |
dc.date.available | 2024-10-21T18:24:25Z | |
dc.date.issued | 2024 | |
dc.description.abstract | In this work, we present a conceptual framework to determine the relevant recording time for nursing records, considering the effective detection and minimal interference with privacy. Our goal is to reduce the documentation burden, while ensuring compliance with the requirements of the General Data Protection Regulation (GDPR). We focus on data minimization and use a combination of speaker, context, and pronoun classification to accurately distinguish between nursing staff, patients, and visitors. Our work might indicate that when context and pronoun classification are used to identify patients, age classification becomes redundant. Furthermore, we address the challenges posed by non-native speakers in nursing homes, as language proficiency significantly affects the performance of language processing models. This work forms the basis for the automation of documentation processes in nursing homes. | en |
dc.identifier.doi | 10.18420/inf2024_32 | |
dc.identifier.eissn | 2944-7682 | |
dc.identifier.isbn | 978-3-88579-746-3 | |
dc.identifier.issn | 2944-7682 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/45191 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | INFORMATIK 2024 | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-352 | |
dc.subject | Speech-Based Activity Recognition | |
dc.subject | Electronic Health Record | |
dc.subject | General Data Protection Regulation | |
dc.subject | Speaker Identification | |
dc.subject | Context Analysis | |
dc.subject | Natural Language Processing | |
dc.title | Addressing Privacy in Passive Data Collection for Nursing Documentation | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 454 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 443 | |
gi.conference.date | 24.-26. September 2024 | |
gi.conference.location | Wiesbaden | |
gi.conference.sessiontitle | 8th International Workshop on Annotation of useR Data for UbiquitOUs Systems |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- Bahrololloomi_et_al_Addressing_Privacy.pdf
- Größe:
- 496.98 KB
- Format:
- Adobe Portable Document Format