Logo des Repositoriums
 
Konferenzbeitrag

Addressing Privacy in Passive Data Collection for Nursing Documentation

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

In this work, we present a conceptual framework to determine the relevant recording time for nursing records, considering the effective detection and minimal interference with privacy. Our goal is to reduce the documentation burden, while ensuring compliance with the requirements of the General Data Protection Regulation (GDPR). We focus on data minimization and use a combination of speaker, context, and pronoun classification to accurately distinguish between nursing staff, patients, and visitors. Our work might indicate that when context and pronoun classification are used to identify patients, age classification becomes redundant. Furthermore, we address the challenges posed by non-native speakers in nursing homes, as language proficiency significantly affects the performance of language processing models. This work forms the basis for the automation of documentation processes in nursing homes.

Beschreibung

Bahrololloomi, Farnod; Luderschmidt, Johannes; Staab, Sergio (2024): Addressing Privacy in Passive Data Collection for Nursing Documentation. INFORMATIK 2024. DOI: 10.18420/inf2024_32. Bonn: Gesellschaft für Informatik e.V.. ISSN: 2944-7682. PISSN: 1617-5468. EISSN: 2944-7682. ISBN: 978-3-88579-746-3. pp. 443-454. 8th International Workshop on Annotation of useR Data for UbiquitOUs Systems. Wiesbaden. 24.-26. September 2024

Zitierform

Tags