Logo des Repositoriums
 
Konferenzbeitrag

A Methodology and System For Big-Thick Data Collection

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Pervasive sensors have become essential in research for gathering real-world data. However, current studies often focus solely on objective data, neglecting subjective human contributions. We introduce an approach and system for collecting big-thick data, combining extensive sensor data (big data) with qualitative human feedback (thick data). This fusion enables effective collaboration between humans and machines, allowing machine learning to benefit from human behavior and interpretations. Emphasizing data quality, our system incorporates continuous monitoring and adaptive learning mechanisms to optimize data collection timing and context, ensuring relevance, accuracy, and reliability. The system comprises three key components: a) a tool for collecting sensor data and user feedback, b) components for experiment planning and execution monitoring, and c) a machine-learning component that enhances human-machine interaction.

Beschreibung

Kayongo, Ivan; Zhao, Haonan; Malcotti, Leonardo; Giunchiglia, Fausto (2024): A Methodology and System For Big-Thick Data Collection. INFORMATIK 2024. DOI: 10.18420/inf2024_33. Bonn: Gesellschaft für Informatik e.V.. ISSN: 2944-7682. PISSN: 1617-5468. EISSN: 2944-7682. ISBN: 978-3-88579-746-3. pp. 455-463. 8th International Workshop on Annotation of useR Data for UbiquitOUs Systems. Wiesbaden. 24.-26. September 2024

Zitierform

Tags