Logo des Repositoriums
 

Dissertation Abstract: Taming Exact Inference in Temporal Probabilistic Relational Models

dc.contributor.authorGehrke, Marcel
dc.date2024-11-01
dc.date.accessioned2025-01-13T11:15:16Z
dc.date.available2025-01-13T11:15:16Z
dc.date.issued2024
dc.description.abstractProcesses in our world are of a temporal probabilistic relational nature. An epidemic is an example of such a process. This dissertation abstract uses the scenario of an epidemic to illustrate the lifted dynamic junction tree algorithm (LDJT), which is a temporal probabilistic relational inference algorithm. More specifically, we argue that existing propositional temporal probabilistic inference algorithms are not suited to model an epidemic, i.e., without accounting for the relational part, and present how LDJT uses the relational aspect. Additionally, we illustrate how LDJT preserves groups of indistinguishable objects over time and have a look at LDJT from a theoretical side.de
dc.identifier.doi10.1007/s13218-023-00813-w
dc.identifier.issn1610-1987
dc.identifier.urihttp://dx.doi.org/10.1007/s13218-023-00813-w
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45568
dc.publisherSpringer
dc.relation.ispartofKI - Künstliche Intelligenz: Vol. 38, No. 3
dc.relation.ispartofseriesKI - Künstliche Intelligenz
dc.subjectLifted inference
dc.subjectTemporal probabilistic relational inference
dc.subjectTractable inference
dc.titleDissertation Abstract: Taming Exact Inference in Temporal Probabilistic Relational Modelsde
dc.typeText/Journal Article
mci.reference.pages219-224

Dateien