Logo des Repositoriums
 

Understanding and addressing user needs for annotation of simple sensor data: Bridging the gap between human sensemaking and machine interpretation

dc.contributor.authorKurze, Albrecht
dc.contributor.authorReuter, Christin
dc.contributor.editorKlein, Maike
dc.contributor.editorKrupka, Daniel
dc.contributor.editorWinter, Cornelia
dc.contributor.editorGergeleit, Martin
dc.contributor.editorMartin, Ludger
dc.date.accessioned2024-10-21T18:24:25Z
dc.date.available2024-10-21T18:24:25Z
dc.date.issued2024
dc.description.abstractThe increasing presence of sensors in smart homes generates vast amounts of data, which require effective interpretation to be useful, often along with data annotation. While automatic approaches can automatically analyze sensor data but require strict and clean annotations, they often neglect the complex, multidimensional nature of human sensemaking. We explore this gap and propose an approach to bridge this gap. We present preliminary findings from three directions: lay user annotations of sensor data collected in a field study using our Sensorkit solution, analysis of existing annotation tools, and a human-centered design process for a new annotation solution. Our goal is to develop a more integrated approach to sensor data interpretation that benefits both humans and machines.en
dc.identifier.doi10.18420/inf2024_34
dc.identifier.eissn2944-7682
dc.identifier.isbn978-3-88579-746-3
dc.identifier.issn2944-7682
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45193
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2024
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-352
dc.subjectSmart Home
dc.subjectIoT
dc.subjectHCI
dc.subjectSensors
dc.subjectSensor Data
dc.subjectSensemaking
dc.subjectAnnotation
dc.subjectData Work
dc.subjectAI
dc.subjectML
dc.subjectArtificial Intelligence
dc.subjectMachine Learning
dc.subjectInternet of Things
dc.subjectHuman-Computer Interaction
dc.titleUnderstanding and addressing user needs for annotation of simple sensor data: Bridging the gap between human sensemaking and machine interpretationen
dc.typeText/Conference Paper
gi.citation.endPage472
gi.citation.publisherPlaceBonn
gi.citation.startPage465
gi.conference.date24.-26. September 2024
gi.conference.locationWiesbaden
gi.conference.sessiontitle8th International Workshop on Annotation of useR Data for UbiquitOUs Systems

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
Kurze_Reuter_Understanding_and_addressing_user_needs.pdf
Größe:
1007.65 KB
Format:
Adobe Portable Document Format