Logo des Repositoriums
 

Instrumenting Python with Kieker

dc.contributor.authorSimonov, Serafim
dc.contributor.authorDüllmann, Thomas F.
dc.contributor.authorJung, Reiner
dc.contributor.authorGundlach, Sven
dc.contributor.editorHerrmann, Andrea
dc.date.accessioned2024-02-22T10:37:52Z
dc.date.available2024-02-22T10:37:52Z
dc.date.issued2023
dc.description.abstractPython has become a widely used programming language in big data, machine learning, and scientific modeling. In all these domains, performance is a key factor to success and requires the ability to understand the runtime behavior of software. Therefore, we ported Kieker monitoring to Python and evaluated different approaches to introduce probes into code. In this paper, we evaluate these approaches, show their benefits and limitations and provide a perfor mance evaluation of the Kieker 4 Python framework.en
dc.identifier.issn0720-8928
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43639
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftwaretechnik-Trends Band 43, Heft 1
dc.relation.ispartofseriesSoftwaretechnik-Trends
dc.subjectPython
dc.subjectperformance
dc.subjectKieker
dc.subjectmonitoring
dc.titleInstrumenting Python with Kiekeren
dc.typeText/Conference Paper
mci.conference.date7.-9.11.2022
mci.conference.locationStuttgart
mci.conference.sessiontitle13th Symposium on Software Performance (SSP)
mci.reference.pages26-28

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
SSP_22_paper_3057.pdf
Größe:
159.19 KB
Format:
Adobe Portable Document Format