Logo des Repositoriums
 
Textdokument

Sequential networks for cosmic ray simulations

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

A hybrid model of generating cosmic ray showers based on neural networks is presented. We show that the neural network learns the solution to the governing cascade equation in one dimension. We then use the neural network to generate the energy spectra at every height slice. Pitfalls of training to generate a single height slice is discussed, and we present a sequential model which can generate the entire shower from an initial table. Errors associated with the model and the potential to generate the full three dimensional distribution of the shower is discussed.

Beschreibung

Sampathkumar,Pranav; Alves Junior,Augusto Antonio; Pierog,Tanguy; Ulrich,Ralf (2022): Sequential networks for cosmic ray simulations. INFORMATIK 2022. DOI: 10.18420/inf2022_41. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-720-3. pp. 499-506. Workshop on Machine Learning for Astroparticle Physics and Astronomy (ml.astro). Hamburg. 26.-30. September 2022

Zitierform

Tags