Logo des Repositoriums
 

AI Defenders: Machine learning driven anomaly detection in critical infrastructures

dc.contributor.authorNebebe, Betelhem
dc.contributor.authorKröckel, Pavlina
dc.contributor.authorYatagha, Romarick
dc.contributor.authorEdeh, Natasha
dc.contributor.authorWaedt, Karl
dc.contributor.editorKlein, Maike
dc.contributor.editorKrupka, Daniel
dc.contributor.editorWinter, Cornelia
dc.contributor.editorGergeleit, Martin
dc.contributor.editorMartin, Ludger
dc.date.accessioned2024-10-21T18:24:17Z
dc.date.available2024-10-21T18:24:17Z
dc.date.issued2024
dc.description.abstractPrevious studies have evaluated the suitability of different machine learning (ML) models for anomaly detection in critical infrastructures, which are pivotal due to the potential consequences of disruptions that can lead to safety risks, operational downtime, and financial losses. Ensuring robust anomaly detection for these systems within a company is vital to mitigate risks and maintain continuous operation. In this paper, we utilize a time-series labeled dataset obtained from a hydraulic model simulator (ELVEES simulator) to conduct a comprehensive and comparative analysis of various ML models. The study aims to demonstrate how different models effectively identify and respond to anomalies, underscoring the potential artificial intelligence (AI) driven systems to mitigate attacks. With the chosen approach, we expect to achieve the best performance in detecting two types of anomalies: point anomaly and contextual anomaly.en
dc.identifier.doi10.18420/inf2024_166
dc.identifier.eissn2944-7682
dc.identifier.isbn978-3-88579-746-3
dc.identifier.issn2944-7682
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45143
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofINFORMATIK 2024
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-352
dc.subjectMachine Learning
dc.subjectAnomaly Detection
dc.subjectCybersecurity
dc.subjectArtificial Intelligence
dc.titleAI Defenders: Machine learning driven anomaly detection in critical infrastructuresen
dc.typeText/Conference Paper
gi.citation.endPage1927
gi.citation.publisherPlaceBonn
gi.citation.startPage1917
gi.conference.date24.-26. September 2024
gi.conference.locationWiesbaden
gi.conference.sessiontitle9th IACS WS'24

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
Nebebe_et_al_AI_Defenders.pdf
Größe:
679.41 KB
Format:
Adobe Portable Document Format