Logo des Repositoriums
 

ISTMINER: Interactive Spatiotemporal Co-occurrence Pattern Extraction: A Biodiversity case study

dc.contributor.authorSharafeldeen, Dina
dc.contributor.authorBakli, Mohamed
dc.contributor.authorAlgergawy, Alsayed
dc.contributor.authorKönig-Ries, Birgitta
dc.date.accessioned2021-12-14T10:57:28Z
dc.date.available2021-12-14T10:57:28Z
dc.date.issued2021
dc.description.abstractIn recent years, the exponential growth of spatiotemporal data has led to an increasing need for new interactive methods for accessing and analyzing this data. In the biodiversity domain, species co-occurrence models are critical to gain a mechanistic understanding of the processes underlying biodiversity and supporting its maintenance. This paper introduces a new framework that allows users to explore species occurrences datasets at different spatial and temporal periods to extract co-occurrence patterns. As a real-world case study, we conducted several experiments on a subset of the Global Biodiversity Information Facility (GBIF) occurrences dataset to extract species co-occurrence patterns interactively. For better understanding, these co-occurrence patterns are visualized in a map view and as a graph. Also, the user can export these patterns in CSV format for further use. For many queries, runtimes are in a range that allows for interaction already. Further optimizations are on our research agenda.en
dc.identifier.doi10.18420/informatik2021-043
dc.identifier.isbn978-3-88579-708-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/37708
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofINFORMATIK 2021
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-314
dc.subjectSpatiotemporal data mining
dc.subjectCo-occurrence patterns
dc.subjectBiodiversity data mining
dc.titleISTMINER: Interactive Spatiotemporal Co-occurrence Pattern Extraction: A Biodiversity case studyen
gi.citation.endPage579
gi.citation.startPage565
gi.conference.date27. September - 1. Oktober 2021
gi.conference.locationBerlin
gi.conference.sessiontitleWorkshop: Computer Science for Biodiversity (CS4BIODiversity)

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
D1-10.pdf
Größe:
809.83 KB
Format:
Adobe Portable Document Format