Logo des Repositoriums
 

Partial Image Active Annotation (PIAA): An Efficient Active Learning Technique Using Edge Information in Limited Data Scenarios

dc.contributor.authorKadir, Md Abdul
dc.contributor.authorAlam, Hasan Md Tusfiqur
dc.contributor.authorSrivastav, Devansh
dc.contributor.authorProfitlich, Hans-Jürgen
dc.contributor.authorSonntag, Daniel
dc.date2024-11-01
dc.date.accessioned2025-01-13T11:15:16Z
dc.date.available2025-01-13T11:15:16Z
dc.date.issued2024
dc.description.abstractActive learning (AL) algorithms are increasingly being used to train models with limited data for annotation tasks. However, the selection of data for AL is a complex issue due to the restricted information on unseen data. To tackle this problem, a technique we refer to as Partial Image Active Annotation (PIAA) employs the edge information of unseen images as prior knowledge to gauge uncertainty. This uncertainty is determined by examining the divergence and entropy in model predictions across edges. The resulting measure is then applied to choose superpixels from input images for active annotation. We demonstrate the effectiveness of PIAA in multi-class Optical Coherence Tomography (OCT) segmentation tasks, attaining a Dice score comparable to state-of-the-art OCT segmentation algorithms trained with extensive annotated data. Concurrently, we successfully reduce annotation label costs to 12%, 2.3%, and 3%, respectively, across three publicly accessible datasets (Duke, AROI, and UMN).de
dc.identifier.doi10.1007/s13218-024-00849-6
dc.identifier.issn1610-1987
dc.identifier.urihttp://dx.doi.org/10.1007/s13218-024-00849-6
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/45572
dc.publisherSpringer
dc.relation.ispartofKI - Künstliche Intelligenz: Vol. 38, No. 3
dc.relation.ispartofseriesKI - Künstliche Intelligenz
dc.subjectActive learning
dc.subjectAL
dc.subjectDeep learning
dc.subjectMedical image
dc.subjectOCT
dc.subjectSegmentation
dc.titlePartial Image Active Annotation (PIAA): An Efficient Active Learning Technique Using Edge Information in Limited Data Scenariosde
dc.typeText/Journal Article
mci.reference.pages133-144

Dateien