Auflistung nach Schlagwort "Mental models"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- WorkshopbeitrageXplainable AI: Take one Step Back, Move two Steps forward(Mensch und Computer 2020 - Workshopband, 2020) Alizadeh, Fatemeh; Esau, Margarita; Stevens, Gunnar; Cassens, LenaIn 1991 the researchers at the center for the Learning Sciences of Carnegie Mellon University were confronted with the confusing question of “where is AI” from the users, who were interacting with AI but did not realize it. Three decades of research and we are still facing the same issue with the AItechnology users. In the lack of users’ awareness and mutual understanding of AI-enabled systems between designers and users, informal theories of the users about how a system works (“Folk theories”) become inevitable but can lead to misconceptions and ineffective interactions. To shape appropriate mental models of AI-based systems, explainable AI has been suggested by AI practitioners. However, a profound understanding of the current users’ perception of AI is still missing. In this study, we introduce the term “Perceived AI” as “AI defined from the perspective of its users”. We then present our preliminary results from deep-interviews with 50 AItechnology users, which provide a framework for our future research approach towards a better understanding of PAI and users’ folk theories.
- ZeitschriftenartikelWhy Machines Don’t (yet) Reason Like People(KI - Künstliche Intelligenz: Vol. 33, No. 3, 2019) Khemlani, Sangeet; Johnson-Laird, P. N.AI has never come to grips with how human beings reason in daily life. Many automated theorem-proving technologies exist, but they cannot serve as a foundation for automated reasoning systems. In this paper, we trace their limitations back to two historical developments in AI: the motivation to establish automated theorem-provers for systems of mathematical logic, and the formulation of nonmonotonic systems of reasoning. We then describe why human reasoning cannot be simulated by current machine reasoning or deep learning methodologies. People can generate inferences on their own instead of just evaluating them. They use strategies and fallible shortcuts when they reason. The discovery of an inconsistency does not result in an explosion of inferences—instead, it often prompts reasoners to abandon a premise. And the connectives they use in natural language have different meanings than those in classical logic. Only recently have cognitive scientists begun to implement automated reasoning systems that reflect these human patterns of reasoning. A key constraint of these recent implementations is that they compute, not proofs or truth values, but possibilities.