Auflistung nach Schlagwort "Gait Recognition"
1 - 3 von 3
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragBenefits of Gaussian Convolution in Gait Recognition(BIOSIG 2018 - Proceedings of the 17th International Conference of the Biometrics Special Interest Group, 2018) Marsico, Maria De; Mecca, AlessioThe first and still popular approach to gait recognition applies computer vision techniques to appearance-based features of walking patterns. More recently, wearable sensors have become attractive. The accelerometer is the most used one, being embedded in widespread mobile devices. Related techniques do not suffer for problems like occlusion and point of view, but for intra-subject variations caused by walking speed, ground type, shoes, etc. However, we can often recognize a person from the walking pattern, and this stimulates to search for robust features, able to sufficiently characterize this trait. This paper presents some preliminary experiments using the convolution with Gaussian kernels to extract relevant gait elements. The experiments use the large ZJU-gaitacc public dataset, and achieve improved results compared with previous works exploiting the same dataset.
- TextdokumentEvaluation of CNN architectures for gait recognition based on optical flow maps(BIOSIG 2017, 2017) Castro,Francisco M.; Marín-Jiménez,Manuel J.; Guil,Nicolás; López-Tapia,Santiago; de la Blanca,Nicolás PérezThis work targets people identification in video based on the way they walk (i.e.gait) by using deep learning architectures. We explore the use of convolutional neural networks (CNN) for learning high-level descriptors from low-level motion features (i.e.optical flow components). The low number of training samples for each subject and the use of a test set containing subjects different from the training ones makes the search of a good CNN architecture a challenging task.We carry out a thorough experimental evaluation deploying and analyzing four distinct CNN models with different depth but similar complexity. We show that even the simplest CNN models greatly improve the results using shallow classifiers. All our experiments have been carried out on the challenging TUMGAID dataset, which contains people in different covariate scenarios (i.e.clothing, shoes, bags).
- KonferenzbeitragIncorporation of Extra Pseudo Labels for CNN-based Gait Recognition(BIOSIG 2022, 2022) Daigo Muramatsu, Kousuke MoriwakiCNN is a major model used for image-based recognition tasks, including gait recognition, and many CNN-based network structures and/or learning frameworks have been proposed. Among them, we focus on approaches that use multiple labels for learning, typified by multi-task learning. These approaches are sometimes used to improve the accuracy of the main task by incorporating extra labels associated with sub-tasks. The incorporated labels for learning are usually selected from real tasks heuristically; for example, gender and/or age labels are incorporated together with subject identity labels.We take a different approach and consider a virtual task as a sub-task, and incorporate pseudo output labels together with labels associated with the main task and/or real task. In this paper, we focus on a gait-based person recognition task as the main task, and we discuss the effectiveness of virtual tasks with different pseudo labels for construction of a CNN-based gait feature extractor.