Auflistung nach Schlagwort "Entscheidungsbäume"
1 - 6 von 6
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragEntscheidungsbäume in der Mittelstufe(INFORMATIK 2023 - Designing Futures: Zukünfte gestalten, 2023) Walgenbach, Franz; Wachter, LukasIn einigen kürzlich überarbeiteten Lehrplänen zur Informatik in der Sekundarstufe I taucht das Thema Künstliche Intelligenz insbesondere in Form des Maschinellen Lernens auf. Dieses Abstract gibt einen Vorschlag zur Durchführung einer Unterrichtsreihe zum Thema Entscheidungsbäume, in der neben der Grundidee des Maschinellen Lernens auch Gütekriterien von Modellen sowie der Einfluss der Datenauswahl zum Trainieren des Modells anhand konkreter alltagsnaher Beispiele erarbeitet werden. Die Unterrichtsreihe befindet sich derzeit noch in der Entwicklungsphase und soll im Weiteren Verlauf erprobt werden.
- TextdokumentEntwicklung und Reflexion einer Unterrichtssequenz zum Maschinellen Lernen als Aspekt von Data Science in der Sekundarstufe II(Informatik für alle, 2019) Opel, Simone; Schlichtig, Michael; Schulte, Carsten; Biehler, Rolf; Frischemeier, Daniel; Podworny, Susanne; Wassong, ThomasDie Bereiche „Data Science“ und „Big Data“ sowie ihre technischen, ethischen und gesellschaftlichen Auswirkungen werden zunehmend nicht nur in der Wissenschaft, sondern auch in diversen Medien diskutiert und somit verstärkt auch zu einem wichtigen Thema für alle. Um den Schülerinnen und Schülern der Sekundarstufe II einen theoretisch und fachwissenschaftlich fundierten Einstieg in diesen Themenbereich zu ermöglichen, wurde ein erster Entwurf eines interdisziplinären Curriculums entwickelt, das neben fachlichen Aspekten von Data Science einen Fokus auf sich hieraus ergebende gesellschaftliche Fragestellungen legt. Es werden neben der Konzeption des Kurses die bisherigen Erfahrungen aus der Durchführung – insbesondere in Hinsicht der darin enthaltenen Unterrichtseinheit zum Maschinellen Lernen - berichtet, sowie die sich hieraus ergebenden Implikationen für die Weiterentwicklung dargestellt und diskutiert.
- ZeitschriftenartikelKleine Barrieren für große Analysen – Eine Untersuchung der Eignung aktueller Plattformen für Self-Service Data Mining(HMD Praxis der Wirtschaftsinformatik: Vol. 56, No. 5, 2019) Badura, Daniel; Schulz, MichaelUm das Potential der stetig wachsenden Datenmengen in verschiedenen Geschäfts- und Gesellschaftsbereichen verstärkt zur Erkenntnisgewinnung und Entscheidungsunterstützung nutzen zu können, wäre es hilfreich, Big-Data-Analysemethoden für einen größeren Anwenderkreis zugänglich zu machen. Dies kann entweder durch eine stärkere Vermittlung von Datenkompetenzen aus Anwendersicht oder durch eine Vereinfachung der Methoden, insbesondere durch weitere Automatisierung der Prozesse oder Algorithmen mit geringer Komplexität aus Anwendungssicht geschehen. Zu letzteren gehören unter anderem Entscheidungsbäume, da die verwendeten Algorithmen leicht nachvollziehbar und die Analyseergebnisse zudem grafisch darstellbar sind. Für die in dieser Arbeit vorgestellte Versuchsreihe wurden sie daher als Anhaltspunkt für die Etablierbarkeit von Self-Service Data Mining verwendet. In den Plattformen IBM SPSS Modeler, RapidMiner, KNIME und Weka wurden auf einer einheitlichen Datengrundlage Klassifikationsmodelle erstellt und diese in Bezug auf ihre Genauigkeit und Komplexität miteinander verglichen. Die Ergebnisse deuten darauf hin, dass die Plattformen im Hinblick auf diese beiden Punkte unterschiedliche Stärken und Schwächen im Analyseprozess aufweisen. Gegenwärtig gibt es bereits vielversprechende Ansätze zur Erweiterung des potentiellen Nutzerkreises von Big-Data-Analysen, jedoch sind diese noch nicht flächendeckend etabliert. To further harness the potential of the growing volume of available data in different areas of business and society, it would be helpful if big data analytics could be made available to a larger group of users. This can be achieved either through an increase in general data literacy or a simplification of the process, especially through further automation or more easily comprehensible algorithms. Decision trees are an example of the latter, since analytical results can be represented in visual form. For the trials presented in this article, they were used as a reference point for the feasibility of self-service analytics. Classification models were constructed in the platforms IBM SPSS Modeler, RapidMiner, KNIME and Weka and were compared with regards to their accuracy and comprehensibility. The results indicate that the platforms possess different strengths and weaknesses at different steps of the process. Currently, there are already some promising self-service solutions, but they are not yet widely established.
- TextdokumentKünstliche Intelligenz im Informatikunterricht der Sek II – Unterrichtsmodul “Lernende Algorithmen”(Informatik für alle, 2019) Schmidt, Pascal; Strobel, StefanDer Workshop zeigt einen unterrichtspraktischen Weg auf, wie in das Thema “Lernende Algorithmen” am Beispiel von Entscheidungsbäumen im Informatikunterricht der Sekundarstufe II eingeführt werden kann.
- Conference ProceedingsKünstliche Intelligenz und maschinelles Lernen im Informatikunterricht der Sek. I mit Jupyter Notebooks und Python am Beispiel von Entscheidungsbäumen und künstlichen neuronalen Netzen(INFOS 2021 – 19. GI-Fachtagung Informatik und Schule, 2021) Bovermann, Klaus; Fleischer, Yannik; Hüsing, Sven; Opitz, Christian
- TextdokumentMaschinelles Lernen im Unterricht mit Jupyter Notebook(Informatik für alle, 2019) Schlichtig, Michael; Opel, Simone; Schulte, Carsten; Biehler, Rolf; Frischemeier, Daniel; Podworny, Susanne; Wassong, ThomasData Science und Big Data durchdringt in ihren diversen Facetten unser tägliches Leben– kaum ein Tag, an dem nicht verschiedene Meldungen über technische Innovationen, Einsatzmöglichkeiten von Künstlicher Intelligenz (KI) und Maschinelles Lernen (ML) und ihre ethischen sowie gesellschaftlichen Implikationen in den unterschiedlichen Medien diskutiert werden. Aus diesem Grund erscheint es uns immens wichtig, diese Fragestellungen und Technologien auch in den Unterricht der Sekundarstufe II zu integrieren. Um diesem Anspruch gerecht zu werden, entwickelten wir im Rahmen eines Forschungsprojekts ein Curriculum, welches wir als konkretes Unterrichtskonzept innerhalb eines Projektkurses erprobt, evaluiert weiterentwickelt wird. Bei der Implementierung entschieden wir uns, zur aktiven Umsetzung von Konzepten von ML als Plattform Jupyter Notebook mit Python zu verwenden, da diese Umgebung durch die Verbindung von Code und Hypertext zur Dokumentation und Erklärung Medienbrüche im Lernprozess verringern kann. Zudem ist Python zur Implementierung der Methoden von ML sehr gut geeignet. Im Themenfeld des ML als Teilgebiet der KI legen wir den Fokus auf zwei unterschiedliche Lernverfahren um verschieden Aspekte von ML, u.A. wie Nachvollziehbarkeit unter gesellschaftlichen Gesichtspunkten zu vermitteln. Diese sind Künstliche Neuronale Netze (bei denen die Berechnung und Bedeutung der Kantengewichte zwischen den Neuronen für den Menschen insbesondere bei komplexeren Netzen kaum nachvollziehbar erschienen) und Entscheidungsbäume (strukturierte und gerichtete Bäume zur Darstellung von Entscheidungsregeln, welche auch für Schülerinnen und Schüler meist gut nachvollziehbares und verständliches KI-Modell darstellen). In diesem Workshop stellen wir konkrete Umsetzungsbeispiele inklusive der Programmierung für beide Verfahren mit Jupyter Notebook und Python als Teil einer Unterrichtssequenz vor und diskutieren diese.