Auflistung nach Schlagwort "Density-based Clustering"
1 - 1 von 1
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragEFM-DBSCAN: Ein baumbasierter Clusteringalgorithmus unter Ausnutzung erweiterter Leader-Umgebungen(Datenbanksysteme für Business, Technologie und Web (BTW 2017), 2017) Egert, PhilippDBSCAN ist ein dichte-basierter Clusteringalgorithmus, der beliebig geformte Cluster erkennt und sie von Rauschen trennt. Aufgrund der Laufzeit von O(n^2) ist seine Anwendung jedoch auf kleine Datenkollektionen beschränkt. Um diesen Aufwand zu reduzieren, wurde der auf dem Konzept der Leader-Umgebung basierende Algorithmus FM-DBSCAN vorgestellt, der für beliebige Metriken dasselbe Clustering wie DBSCAN liefert. In dieser Arbeit wird nun basierend auf FM-DBSCAN das Verfahren EFM-DBSCAN entwickelt. EFM-DBSCAN nutzt die folgenden zwei Konzepte zur E zienzsteigerung: (a) eine baumbasierte Partitionierung und (b) die Erweiterung der Objekte einer Leader-Umgebung um die Distanzen zu ihrem Leader. Erste Experimente zeigen, dass EFM-DBSCAN bis zu einem Faktor 17 weniger Distanzberechnungen und bis zu einem Faktor 13 weniger Rechenzeit als FM-DBSCAN benötigt. Gegenüber DBSCAN wurde ein Faktor von bis zu 10^4 eingespart.