Auflistung nach Schlagwort "AutoML"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragAutomatisierte prädiktive Analytik in der Gepäckabfertigung(INFORMATIK 2024, 2024) Dohrn, Finn; Tropmann-Frick, MarinaZiel dieser Arbeit ist die Entwicklung und Validierung eines automatisierten Prognosemodells für Gepäckmengen am Hamburger Flughafen unter Verwendung der Low-Code AutoML-Bibliothek PyCaret. Durch die Automatisierung signifikanter Phasen des Machine-Learning-Lebenszyklus konnten präzise Vorhersagen für Gepäckstücke pro Flug innerhalb und außerhalb der Flugsaison erreicht werden. Die Ergebnisse zeigen eine Verbesserung der Vorhersagegenauigkeit um 38,6 % gegenüber herkömmlichen Methoden, was die Effizienz in der Personaldisposition maßgeblich unterstützt. Der Einsatz von AutoML ermöglicht zudem eine zeitökonomische Modellentwicklung durch Endanwender. Der Einsatz und Ausbau des autoDS-Moduls kann den bereits hohen Automatisierungsgrad weiter erhöhen. Zukünftige Arbeiten sollten den Einsatz von assistenzgesteuerter Datenvorverarbeitung mit großen Sprachmodellen und Hyperparameteroptimierung für AutoML-Parameter untersuchen, um die Anwendbarkeit und Genauigkeit weiter zu verbessern.
- KonferenzbeitragZum Einsatz von Maschinellem Lernen in der Umweltverwaltung: Der Simplex4Learning Ansatz(INFORMATIK 2024, 2024) Abecker, Andreas; Budde, Matthias; Fuchs-Kittowski, Frank; Großmann, Janik; Koch, Werner; Lachowitzer, Jonas; Lossow, Stefan; Rodner, Erik; Rudolf, Heino; Schulze, PaulZiel des im Herbst 2023 gestarteten Forschungsvorhabens Simplex4Learning ist es, die großen und heterogenen Datenbestände der Umweltbehörden für intelligente Analysen mit Methoden des maschinellen Lernens besser zu erschließen und diese Verfahren für Domänenexperten aus dem Umweltbereich ohne vertiefte ML-Kenntnisse praktikabel anwendbar zu machen. Realisiert wird dies (1) durch die Weiterentwicklung der Simplex4Data-Methode zur Datenbereitstellung für ML, ergänzt um (2) AutoML- und MLOps-Funktionalitäten, (3) Funktionalitäten zum Erklären von ML-Ergebnissen, (4) ein ML-Pattern Repository zum Wiederverwenden generalisierter ML-Workflows, all das (5) exemplarisch angebunden an die Datenanalyseplattform Disy Cadenza und das Data Warehouse System Simplex4Data. Der Arbeitsplan des Projekts ist an den konkreten Beispieldaten und Anwendungsfällen von Landesbehörden aus drei Bundesländern orientiert. Der vorliegende Beitrag als „Work-in-Progress“-Bericht skizziert Motivation und Ausgangslage des Vorhabens, den technischen Lösungsansatz und erste Zwischenergebnisse.