Auflistung nach Autor:in "Dohrn, Finn"
1 - 1 von 1
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragAutomatisierte prädiktive Analytik in der Gepäckabfertigung(INFORMATIK 2024, 2024) Dohrn, Finn; Tropmann-Frick, MarinaZiel dieser Arbeit ist die Entwicklung und Validierung eines automatisierten Prognosemodells für Gepäckmengen am Hamburger Flughafen unter Verwendung der Low-Code AutoML-Bibliothek PyCaret. Durch die Automatisierung signifikanter Phasen des Machine-Learning-Lebenszyklus konnten präzise Vorhersagen für Gepäckstücke pro Flug innerhalb und außerhalb der Flugsaison erreicht werden. Die Ergebnisse zeigen eine Verbesserung der Vorhersagegenauigkeit um 38,6 % gegenüber herkömmlichen Methoden, was die Effizienz in der Personaldisposition maßgeblich unterstützt. Der Einsatz von AutoML ermöglicht zudem eine zeitökonomische Modellentwicklung durch Endanwender. Der Einsatz und Ausbau des autoDS-Moduls kann den bereits hohen Automatisierungsgrad weiter erhöhen. Zukünftige Arbeiten sollten den Einsatz von assistenzgesteuerter Datenvorverarbeitung mit großen Sprachmodellen und Hyperparameteroptimierung für AutoML-Parameter untersuchen, um die Anwendbarkeit und Genauigkeit weiter zu verbessern.