Auflistung Künstliche Intelligenz 31(1) - März 2017 nach Autor:in "Eichhorn, Christian"
1 - 1 von 1
Treffer pro Seite
Sortieroptionen
- ZeitschriftenartikelA Practical Comparison of Qualitative Inferences with Preferred Ranking Models(KI - Künstliche Intelligenz: Vol. 31, No. 1, 2017) Beierle, Christoph; Eichhorn, Christian; Kutsch, StevenWhen reasoning qualitatively from a conditional knowledge base, two established approaches are system Z and p-entailment. The latter infers skeptically over all ranking models of the knowledge base, while system Z uses the unique pareto-minimal ranking model for the inference relations. Between these two extremes of using all or just one ranking model, the approach of c-representations generates a subset of all ranking models with certain constraints. Recent work shows that skeptical inference over all c-representations of a knowledge base includes and extends p-entailment. In this paper, we follow the idea of using preferred models of the knowledge base instead of the set of all models as a base for the inference relation. We employ different minimality constraints for c-representations and demonstrate inference relations from sets of preferred c-representations with respect to these constraints. We present a practical tool for automatic c-inference that is based on a high-level, declarative constraint-logic programming approach. Using our implementation, we illustrate that different minimality constraints lead to inference relations that differ mutually as well as from system Z and p-entailment.